Extensions 1→N→G→Q→1 with N=C2 and Q=C23⋊Dic7

Direct product G=N×Q with N=C2 and Q=C23⋊Dic7
dρLabelID
C2×C23⋊Dic7112C2xC2^3:Dic7448,753


Non-split extensions G=N.Q with N=C2 and Q=C23⋊Dic7
extensionφ:Q→Aut NdρLabelID
C2.1(C23⋊Dic7) = C24.Dic7central extension (φ=1)112C2.1(C2^3:Dic7)448,82
C2.2(C23⋊Dic7) = C24.D14central extension (φ=1)112C2.2(C2^3:Dic7)448,83
C2.3(C23⋊Dic7) = (C2×C28)⋊C8central extension (φ=1)224C2.3(C2^3:Dic7)448,85
C2.4(C23⋊Dic7) = C24⋊Dic7central stem extension (φ=1)564C2.4(C2^3:Dic7)448,93
C2.5(C23⋊Dic7) = (D4×C14)⋊C4central stem extension (φ=1)112C2.5(C2^3:Dic7)448,94
C2.6(C23⋊Dic7) = C4⋊C4⋊Dic7central stem extension (φ=1)112C2.6(C2^3:Dic7)448,95
C2.7(C23⋊Dic7) = (C22×C28)⋊C4central stem extension (φ=1)1124C2.7(C2^3:Dic7)448,96
C2.8(C23⋊Dic7) = C422Dic7central stem extension (φ=1)1124C2.8(C2^3:Dic7)448,98
C2.9(C23⋊Dic7) = C42.Dic7central stem extension (φ=1)1124C2.9(C2^3:Dic7)448,99
C2.10(C23⋊Dic7) = C423Dic7central stem extension (φ=1)564C2.10(C2^3:Dic7)448,102
C2.11(C23⋊Dic7) = C42.3Dic7central stem extension (φ=1)1124C2.11(C2^3:Dic7)448,105

׿
×
𝔽